If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+24x=36
We move all terms to the left:
5x^2+24x-(36)=0
a = 5; b = 24; c = -36;
Δ = b2-4ac
Δ = 242-4·5·(-36)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-36}{2*5}=\frac{-60}{10} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+36}{2*5}=\frac{12}{10} =1+1/5 $
| 4(x-5)=8x-(20+4x) | | 9u+10=-62 | | 10v+-9v=7 | | 8v-v=7 | | b/8+70=79 | | 18p-17p=7 | | 4(5x-6)=3(8x+2) | | n+25/10=5 | | 4(2x+5)=-12+16 | | 3x+4×=5×+8 | | 10m-21=39 | | 6f-(-17)=35 | | -11=7(1-2f) | | 1.5x(x)=200 | | -5(4-x)+3x=8 | | 3x-38=14 | | 2b=24-26 | | 6x+14=-4x+64 | | 15=z/4-11 | | 6f-17=35 | | 5d-2d+8=3d=0 | | -3v-4(4v-8)=3(8v-1) | | 5(x−1)=20(x−10) | | 4x−3=4x+9 | | 3x+2+85=180 | | 9s+1=100 | | 4(x-3)+6x=8 | | -90=-5(j+67) | | 86=b/9+80 | | 1/2(4a+6=-1/3(-6-9a)+3 | | 6x2-8x=-18 | | -24-10k=8(k+4)-2k |